Seven problems in bubble and jet drop researches 1
نویسندگان
چکیده
منابع مشابه
Air-bubble-triggered drop formation in microfluidics.
In microfluidic devices, droplets are normally formed using T-junction or flow focus mechanisms. While both afford a high degree of control over drop formation, they are limited in maximum production rate by the jetting transition. Here, we introduce a new drop formation mechanism that is not limited by jetting, allowing much faster drop production.
متن کاملCavitation bubble behavior inside a liquid jet
The growth and collapse of laser-induced vapor cavities inside axisymmetric free-falling liquid water jets have been studied. Bubbles of different size are generated at various distances from the jet axis and the effects on the jet interface are recorded by means of ultrafast cinematography. The configuration is characterized by two dimensionless parameters: the bubble to jet diameter ratio and...
متن کاملLarge bubble rupture sparks fast liquid jet.
This Letter presents the novel experimental observation of long and narrow jets shooting out in disconnecting large elongated bubbles. We investigate this phenomenon by carrying out experiments with various viscosities, surface tensions, densities and nozzle radii. We propose a universal scaling law for the jet velocity, which unexpectedly involves the bubble height to the power 3/2. This anoma...
متن کاملA Model for Jet Shortening in Drop-On-Demand Ink-Jet Printing
A new model has been developed for the surface energydriven shortening of a free, cone-shaped fluid ligament of finite length, as a function of ligament diameter, length, mass and head speed. It differs significantly from classical models based on infinitely long cylindrical (Taylor) or conical (Keller) shapes, but leads to overall shortening speeds which are very similar to those provided by T...
متن کاملMaximal air bubble entrainment at liquid-drop impact.
At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets, capillary forces minimize the entrained bubble. However,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Limnology and Oceanography
سال: 1978
ISSN: 0024-3590
DOI: 10.4319/lo.1978.23.3.0389